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Microscopic Simulation of Limit Cycle Behavior
in Spatially Extended Systems
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The onset of homogeneous oscillations in spatially extended system is considered.
The master equation formulation shows that, in a one-dimensional system, there
exists a finite length beyond which the homogeneous oscillations are destroyed.
Microscopic simulations are used to investigate the status of this prediction and
quantitative agreement is obtained. The origin of the desynchronization
mechanism is clarified.
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1. INTRODUCTION

The phenomenological theory of reaction�diffusion systems rests on the
fundamental assumption of a clear-cut separation between macroscopic
behavior, as described by the equations of chemical kinetics coupled to
mass transfer, and the dynamical processes at the microscopic level.
Gre� goire Nicolis was one of the first scientists to realize that this time-
honored hypothesis had to be revised in certain situations.(1) A striking
example is provided by transient phenomena involving a long induction
period followed suddenly by a violent ignition. On the basis of a probabilistic
analysis, Nicolis and his colleagues succeeded in establishing the existence
of fluctuation-induced macroscopic effects having no analog in the
phenomenological description, such as a considerable dispersion of ignition
times and a transient bimodality in the probability distribution.(2, 3) These
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predictions have been shown to apply to a wide range of problems and
have been confirmed by experiments in chemistry, (4) nonlinear optics, (5)

and electronic devices.(6) In this article we shall be concerned with another
puzzling case related to the onset of homogeneous oscillations in spatially
extended (unstirred) systems. Started some twenty years ago by Lemarchand
and Nicolis, (7) some intriguing aspects of this problem still remain open.

The time symmetry breaking associated with the transition to a
sustained time periodic behavior (Hopf bifurcation) implies some profound
changes in the statistical properties of the system. For a homogeneous
system, slightly different initial conditions will end up on the deterministic
limit cycle with various phases. The macroscopic behavior is thus robust
toward fluctuations but phase fluctuations become comparable to the
phase itself.(8) The situation is much more involved in spatially extended
systems since the thresholds of successive instabilities are squeezed in a
narrow region of parameter space and multiplicity associated to different
orientations or phases of the various states accessible to the system is
greatly enhanced.(9) The question then arises as to whether perturbations
induced by the microscopic dynamics cannot give rise to a qualitative
change by wiping out, through destructive interference, any systematic
behavior, thus compromising the very existence of bifurcation.(10, 11)

Recently, one of us (F.B.) studied a 1-dimensional reaction�diffusion
system undergoing Hopf bifurcation(12) through the direct simulation of the
associated reaction�diffusion master equation.(13) The analysis reveals that,
as the system size is increased, local fluctuations eventually wipe out the
homogeneous oscillation even though the latter is asymptotically stable.
The corresponding Langevin formulation have led to the same conclu-
sion.(14) The lack of a proper relaxation mechanism of the phase variable
seems to be at the origin of this phenomenon, which marks the limits of
validity of the purely macroscopic description of instabilities.(15) This rather
surprising conclusion raises naturally the question of the very validity of
the stochastic formulation of reactive systems in the presence of Hopf bifur-
cation. Unfortunately, there exists so far not sufficiently precise experimen-
tal data to clarify the situation. In this paper we resort to microscopic
simulations to shed some light on this important issue.

The local formulation of the master equation is summarized in the
next section, along with a review of the main assumptions underlying this
description. Section 3 is devoted to the survey of the microscopic simula-
tion of reactive fluids in the Boltzmann limit. We start our comparative
analysis by considering in Section 4 a simple chemical model which allows
a detailed discussion of the limit of validity of the reaction�diffusion master
equation in the presence of Hopf bifurcation. The main conclusions and
perspectives are presented in Section 5.

426 Mansour et al.



2. REACTION-DIFFUSION MASTER EQUATION

The basic lines of the master equation formulation of reaction�diffu-
sion systems can be summarized as follows.(1, 16, 17) We subdivide the reac-
tion volume into spatial cells [2Vr] and consider as variables the numbers
of particles [Uir] of species i=1, 2,... in these cells. We assume that the set
of variables [Uir] defines a Markov process. The random variables [U ir]
change as a result of two processes: chemical reactions which will be
modeled by a jump Markov process and diffusion whereby a particle may
jump to an adjacent cell. The latter will be assimilated to a random walk.
The resulting probability distribution P([Uir]; t) obeys the so-called multi-
variate master equation:

d
dt

P([Ui r]; t)= :
r, [U$i r]

W([U$i r] | [Uir]) P([U$ir]; t)

+:
i

D� i

2d
:
r, l

[(Uir+1) P(..., Ui r+1, Uir+l&1,...; t)

&Uir P(Uir ; t)] (1)

The sum l runs over the first nearest neighbors of the cell r and D� i is the
mean jump frequency of species i. It is related to Fick's diffusion coefficient
of the species by:

Di=
l2

c

2d
D� i (2)

where lc is the characteristic length of a cell and d the space dimension. The
explicit form of transition probabilities depends on the reaction scheme and
can easily be constructed through combinatorial arguments;(18) they are
extensive quantities proportional to the volume 2V=ld

c of the cells.
Beside the Markovian hypothesis, the very basics of any stochastic

theory of reactive fluids relies on the fundamental assumption that the state
of the system can be completely specified in terms of a limited number of
macroscopic variables. For isothermal systems, these are just the composi-
tion variables. The lumping of all microscopic degrees of freedom except
the composition variables can only be justified in systems remaining per-
manently in a local thermal equilibrium state, which in turn requires a
``large'' number of molecules per cell. Detailed numerical studies show that
a few hundreds of molecules are enough in most practical situations. The
local equilibrium assumption is also a necessary condition that allows to
approximate the extremely complex motion of molecules by a simple random
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walk. We thus conclude that the linear dimensions of a cell should be typi-
cally of the order of the reactive mean free path.

The master equation (1) provides an elegant and simple generalization
of reaction�diffusion equations. From a theoretical point of view, Nicolis et
al. have shown that in the close vicinity of a pitchfork bifurcation point its
solution can be cast into the exponential of a ``stochastic potential,'' which
turns out to be the Landau Ginzburg potential familiar in equilibrium
critical phenomena.(1, 19) Away from the bifurcation point, it leads to the
Langevin reaction�diffusion equations with the correct fluctuation spec-
trum.(17�20) In more complex situations, it can easily be studied numeri-
cally. Here, the evolution of the system is viewed as a random walk in a
discrete phase space (space of ``numbers of particles'' of different species)
for which transitions occur at randomly spaced time intervals. The
Markovianity of the process leads to an exponential distribution of waiting
times.(21) From this distribution and the transition probabilities associated
to each elementary chemical step, explicit realizations of the process can be
constructed, along the lines of a Monte Carlo type of simulation first
developed by Gillespie.(13) Similar techniques are described in ref. 22.

The validity of the master equation (1), however, rests mainly on
arguments which, although highly plausible, are nevertheless heuristic and
need to be carefully tested. So far, this program has been achieved only in
systems where the macroscopic description remains strictly valid.(23, 24) As
we have underline in the Introduction, this seems not to be the case in a
1-dimensional systems undergoing a Hopf bifurcation.

3. MICROSCOPIC SIMULATION OF REACTIVE FLUIDS

The microscopic simulation of reactive fluids involves some basic dif-
ficulties that are directly related to the very nature of chemical dynamics.
A first problem arises in connection with the validity of the macroscopic
rate equations describing the time evolution of the composition variables in
dilute (ideal) mixtures. This implies that one needs to have ``enough'' elastic
collisions between consecutive reactive collisions in order to ensure
mechanical and thermal equilibrium. As a consequence, only a fraction of
the computing time will contribute effectively to the evolution of the
system, which results in much wasted bookkeeping with a corresponding
waste of CPU time. A second problem is related to the fact that chemical
time scales {c , like for example the period of a limit cycle in an oscillating
system, are frequently in the macroscopic range. To get reliable statistics,
one needs to run the corresponding microscopic simulation over a period
of time significantly larger than {c . This again implies an extremely large
amount of running time.
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To cope with these difficulties, one is forced to simplify as much as
possible both the Newtonian and the chemical dynamics. This can be done
by limiting the simulation to hard spheres dynamics and by considering
dilute mixtures in the Boltzmann limit for which there exists a powerful
algorithm, pioneered by Bird, (25) that runs up to three orders of magnitude
faster than the corresponding molecular dynamic simulation. Bird's method
has become popular since it is in excellent agreement with experimental
and molecular dynamic data.(26, 27) Its basic steps can be summarized as
follows.(28)

As with usual molecular dynamic methods, the state of the system is
the set of particle positions and velocities, [ri , vi ], i=1,..., N where N is the
total number of particles. The evolution is decomposed in time steps 2t,
typically a fraction of the mean collision time for a particle. Within a time
step, the free flight motion and the particle interactions (collisions) are
assumed to be decoupled. The free flight motion for each particle i is com-
puted as ri (t+2t)=ri (t)+vi (t) 2t, along with the appropriate boundary
conditions. After all the particles have been moved, they are sorted into
spatial cells, typically a fraction of a mean free path in length. A set of
representative collisions, for the time step 2t, is chosen in each cell. For
each selected pair a random impact parameter is generated and the colli-
sion is performed. After the collision process has been completed in all
cells, the particles are moved according to their updated velocities and the
procedure is repeated as before. Note that very recently Bird proposed
several modifications that improve the performance and the flexibility of
his original algorithm.(29)

We next define what we mean by ``reactive hard sphere collisions.''(30, 31)

We assign to each species a ``color.'' A reactive collision occurs if the colliding
particles have ``enough'' energy, i.e., if their relative kinetic energy exceeds
some threshold related to the activation energy of the reaction. If this is the
case, then the colors of the particles are changed, according to the chemical
step under consideration. This procedure, however, leads to a continuous
energy transfer from reactant to products which induce a deformation of
the Maxwell�Boltzmann distribution and can thus modifies significantly
the values of the rate constants.(32, 33) To avoid these nonequilibrium
effects, the frequency of reactive collisions must be significantly smaller
than the frequency of elastic collisions, entailing important waste of CPU
time. One way to overcome this difficulty is to further simplify the reactive
collision rules by the following procedure. Let us consider a typical bimolecular
chemical step:

A+B w�
k C+D (3)
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with

k=& exp { E
kBT =#&kA (4)

where & is the collision frequency. After a collision between two particles A
and B has occurred, we choose randomly kA0 of the collisions to be reac-
tive, where kA stands for the Arrhenius factor defined in Eq. (4). Obviously,
this procedure avoids the deformation of the Maxwell�Boltzmann distribu-
tion, since it does not involve any systematic energy transfer between reac-
tant and products. It is, however, restricted to isothermal chemical systems
(see ref. 34 for a review).

It should be noted that such a stochastic treatment of reactive collisions
is basically equivalent to the master equation formulation of elementary
chemical reactions. In other words, a homogeneous fluctuating reactive
Boltzmann equation leads to the very same statistical behavior of composi-
tion variables as the corresponding ``global'' master equation formulation,
at least for binary reactions.(35) This, however, is not necessarily the case
when transport processes are included, since in the Bird algorithm the
motion of the particles is handled exactly whereas, in the master equation
formulation, reaction and diffusion are viewed as independent elementary
processes which in turn allow one to approximate the complex motion of
the particles by a simple random walk. In fact, it has been shown on
specific examples that the reaction�diffusion master equation is not valid
for length scales smaller than the reactive mean free path.(36)

4. THE MODEL

Simple chemical models exhibiting complex behavior, such as the
Brusselator or the Schlo� gl model, involve trimolecular collisions.(1) The Bird
algorithm, however, is restricted to binary collisions only, i.e., to second-
order chemical reactions.(37) It has been shown that the trimolecular step
can be approximated by a pair of bimolecular steps involving different time
scales, so that an adiabatic elimination of a fast variable leads to an
effective trimolecular step.(38) Nevertheless, such a scheme is inappropriate
for microscopic simulation because the species represented by the slow
variables undergo far fewer reactive collisions per unit time than those
represented by fast variables. We thus look here for a chemical model
satisfying the following three constraints: (i) it consists of binary collisions
only; (ii) it has no significant separation of time scales; (iii) it involves as
few reactant as possible. As was shown in ref. 23, the above requirements
are fully satisfied by the following chemical model:
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U+W ww�
k1 V+W (5a)

V+V ww(]ww
k2

k&2
W+S (5b)

V+S ww�
k3 S+S (5c)

where the concentration of S particles (hereafter referred to as ``solvent''
particles) is supposed to remain constant. This can be achieved by intro-
ducing one more participant, say molecules A. Every time an S particle is
created (destroyed) in a collision, an S(A) particle is chosen at random in
the same collisional cell and replaced by an A(S) particle. Since the A
molecules do not participate in any reaction, they merely constitute a reser-
voir of particles maintaining the solvent concentration fixed. They do,
however, modify the microscopic dynamics which, in turn, may interfere
with transport processes at the macroscopic level. Extensive molecular
dynamic simulations have shown that such an effect, if any, remains negli-
gible, as least for dilute systems.(31)

The reactant are confined in a long thin tube, laterally in contact with
a ``reservoir'' with which it can exchange particles through a semi-per-
meable membrane. The microscopic realization of such a ``feed'' process is
discussed in ref. 34. The reactor thus operates effectively as a one dimen-
sional open system. Note that laboratory reactors dealing with unstirred
systems are quite similar to the one we just described.(39, 40) The macro-
scopic rate equations corresponding to the model (5) read:

du
dt

=&k1uw+:u(uf&u)+Du
�2

�x2 u (6a)

dv
dt

=k1u&2(k2v2&k&2ws)&k3vs+:v(vf&v)+Dv
�2

�x2 v (6b)

dw
dt

=k2v2&k&2ws+Dw
�2

�x2 w (6c)

where u, v, w, and s are the mole fractions of U, V, W and S, respectively;
k\i are the rate constants of the ith reaction; :u and :v are the transfer
coefficients (feed rate) of U and V with the reservoir; Du , Dv and Dw are
the diffusion coefficients; and uf , vf are the mole fractions of U and V in the
reservoir (feed mole fractions), respectively. Periodic boundary condition is
adopted and the system is assumed impermeable to W.

The transfer coefficient of a species depends on the diffusion coefficient
of that species as well as on the property of the membrane separating the
system with the reservoir. For simplicity, in our microscopic simulation we
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shall assign to all of the particles same mass and sphere diameter, regard-
less of their chemical identity. This implies that the diffusion coefficients,
and consequently the transfer coefficients, are equal:

Du=Dv=Dw#D (7a)

:u=:v#: (7b)

For certain ranges of parameter values, the macroscopic equations (6)
can admit multiple steady states and limit-cycle oscillations. In this article
we concentrate on a possible occurrence of a Hopf bifurcation. Figure 1
shows the stability diagram for Eqs. (6), where the mole fraction of the V
component in the feed stream, vf , is chosen as the bifurcation parameter,
the other parameters being set to:

k1=k2=k&2s=uf=1; k3s=10:=0.033 (8)

As can be seen, the system undergoes a Hopf bifurcation for a ``critical''
value vf of the bifurcation parameter located at about vc

f r0.2045. This is
confirmed by numerical integration of equations (6) which exhibit
sustained oscillations whenever vf exceeds vc

f .
For the microscopic simulation, we consider a system made of an

assembly of N hard spheres of diameter d confined in a rectangular box of
length L with a number density n=5_10&3 particles per d 3 (the mean free
path * is about 45d ). The solvent mole fraction is set to s=0.1, i.e., 100

Fig. 1. Bifurcation diagram of the homogeneous macroscopic equations (6). The full line
and the dashed line represent the real part and the imaginary part of the largest eigenvalue
4 of the corresponding linearized operator, respectively. The parameters are given in Eq. (8).
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of system is made up solvent molecules. All the particles have same mass
and diameter, regardless of their chemical (color) identity. For practical
convenience, lengths and masses are scaled by the sphere diameter d and
the particle mass m, respectively, i.e., we take d=m=1. Similarly, by an
appropriate scaling of time and velocities, the temperature and thermal
velocity are set to unity. In these units, the Boltzmann constant kB=1�2,
the diffusion coefficient D=29.92 and the collision frequency &=0.025. The
value of the bifurcation parameter is set to vf=4�15r0.27 (recall that of
vc

f r0.20). The reactive mean free path is about 4* which defines the maxi-
mum spatial resolution one might expect from the master equation for-
mulation. Accordingly, in our microscopic simulations statistics are taken
over spatial cells of precisely 4* long. Running the program over a single
period of oscillations requires about 5000 collisions per particle. A uniform
initial state, corresponding to the unstable reference state, is chosen in all
reported cases. We start our simulations by setting the average number of
particles per cell to about 500, leading to a relatively small noise amplitude
of about 50.(42)

The space-time plots of Fig. 2 represent the instantaneous result
(single run) of such a microscopic simulation for three different cases:

(a) A ``small'' system of L=32* long and containing N=4000 particles.

(b) An eight times longer system (L=256*, N=32000).

(c) A forty times longer system (L=1280*, N=160000).

Fig. 2. Space-time plot of the mole fraction of the U species for L=32* (case (a)), L=256*
(case (b)) and L=1280* (case (c)). Dark and bright regions indicate high and low mole
fractions, respectively. The parameters are given in Eq. (8), with vf=4�15.
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As can be seen, in the case (a) the system oscillates synchronously in
a spatially coherent fashion. This same behavior is observed for the case
(b), except that now the spatial fluctuations are quite enhanced. The situa-
tion is entirely different in the case (c) where different parts of the system
oscillate with markedly different phases, picturing a chaotic-like of
behavior. The statistical properties of the system follow the above observa-
tions. For instance, in case (a) the density of states in phase space remains
practically the same as in a 0-d case (crater-like distribution), whereas in
case (c) it takes the form of a broad one humped distribution centered on
the unstable state.

The simulation of the master equation leads qualitatively to the very
same type of behavior. The comparison can be further quantified through the
analysis of the space-time auto-correlation function, Cr(t)=($cr(t) $c0(0)) ,
of the fluctuations of a composition variables $cr(t)#cr(t)&(cr(t)) (note
that r is a discrete variable). In order to estimate the statistical errors, we
performed a series of 25 runs, each of them consisting of 105 collisions per
particle, for the microscopic simulations and about 15 times more for the
corresponding master equation. In Figs. 3 and 4 we show the real part of
the (discrete) spatial Fourier transform, Uk(t), of the correlation function
of the U species ($ur(t) $u0(0)) , for the cases (a) and (b), respectively.
Besides the uniform mode (k=0), the first non-uniform mode (k=1) is
also depicted. For each mode, Uk(t) is normalized to unity at t=0. This
procedure allows to reduce the statistical errors to about 40 for the

Fig. 3. Normalized time correlation function ($uk(t) $u&k(0))�( |$uk | 2) of the U species for
L=32* (case (a)). The full and dashed lines correspond to the homogeneous mode (k=0)
and to the first inhomogeneous mode (k=1), respectively. The diamonds represent the corre-
sponding microscopic results. Parameter values are as in Fig. 2.

434 Mansour et al.



File: 822J 705211 . By:XX . Date:20:09:00 . Time:07:42 LOP8M. V8.B. Page 01:01
Codes: 1406 Signs: 890 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Normalized time correlation function ($uk(t) $u&k(0))�( |$uk | 2) of the U species for
L=256* (case (b)). See caption of Fig. 3 for details.

microscopic simulations and to less than 10 for the master equation
simulations. For the case (a), shown in Fig. 3, the inhomogeneous mode
vanishes almost instantaneously whereas the homogeneous one shows high
persistence, indicating the robustness of the macroscopic limit cycle
towards inhomogeneous fluctuations. The same behavior is observed for
the case (b), shown in Fig. 4, except that now the inhomogeneous mode
show some persistence extending roughly over two oscillations period. The
situation is radically different for the case (c), shown in Fig. 5, where the

Fig. 5. Time correlation function ($uk(t) $u&k(0)) of the U species for L=1280* (case (c)).
See caption of Fig. 3 for details.
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inhomogeneous mode oscillates very much like the homogeneous one.
Furthermore, no significant decay of the correlations is observed in this
case, mainly because of the large number of particles involved (small
noise). The discrepancy with the master equation results is about 20 for
the cases (a) and (b), but grows up to 50 for the case (c), since in this
latter case the correlation functions are not normalized to unity at t=0.

These results clearly indicate that the time evolution of the system is
correctly predicted by the master equation formulation. To complete our
analysis, we have also considered a more sensitive test related to the behavior
of the static (equal time) spatial correlation function Ur#($ur(t) $u0(t))
&$Kr

r, 0(u)�Nc , where Nc is the total average number of particles per cell
(500 in our case). The results are presented in Fig. 6, together with those
obtained from the master equation. Here again, for each case Ur is nor-
malized to unity at r=0. The estimated statistical errors remain below 50,
for the first two cases (a) and (b), but become much higher for the case (c),
growing up to 200 as r approaches its maximum value, r�Lr0.5 (recall
that the system is periodic).

As can be seen, the decay of the spatial correlation function remains
negligible for the case (a) and (b), indicating the highly coherent character
of the evolution. On the contrary, in the case (c) the correlation function
decay's quite rapidly. This loss of spatial coherence is a signature of the
destruction of homogeneous oscillatory regime through destructive inter-
ferences of local phase fluctuations. In any case, the agreement with the

Fig. 6. Normalized static (equal time) spatial correlation function ($u(r) $u(0))�( ($u(0))2) ,
as a function of r�L. The full line corresponds to L=32* (case (a)), the dotted line to
L=256* (case (b)) and the dashed line to L=1280* (case (c)). The diamonds represent the
corresponding microscopic results. Parameter values are as in Fig. 2.
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master equation prediction is very good, much better than the estimated
statistical errors. For instance, the master equation gives 3.33_10&3 for the
local mole fraction fluctuation ($u2

r ) &(u)�Nc of the U species, whereas
the microscopic simulation leads to about 3.45_10&3, so that the dis-
crepancy remains below 40.

5. DISCUSSION

In this work microscopic simulations of chemical systems have been
used to study the limit of validity of the master equation formulation of
reaction�diffusion systems in the presence of Hopf bifurcation. To this end
we have introduced a three variable model, particularly well suited for the
microscopic simulations. In one dimensional geometry, the results obtained
from the associated reaction diffusion master equation indicate that, as the
system size is increased, local fluctuations eventually wipe out the homoge-
neous oscillatory regime, even though the latter is asymptotically stable.
Microscopic simulations have confirmed these observations. Detailed
analysis of the statistical properties of the system allowed us to establish the
validity of the reaction diffusion master equation, including in cases where
the corresponding macroscopic description leads to the opposite results.

The above observations raise some fundamental questions, such as the
relevance of the dimensionality of the embedding space (affecting the
efficiency of the transport mechanism), the effect of the distance from the
bifurcation point, the role of the system size (responsible for the multi-
plicity of unstable modes), etc. Although the complexity of the model
precludes any analytical approach, a qualitative analysis remains never-
theless possible.(14)

The spatial coherence in reactive systems results from two conflicting
processes. On the one hand we have chemical reactions, at the origin of
local composition fluctuations and, on the other hand, the mass diffusion
which propagates these local fluctuations, giving rise to spatial correlations.
The coherence length is thus directly related to the relative importance of
the time scales associated to each of these processes. In our case, the
slowest reactive time scale is the relaxation time associated to phase diffu-
sion {% . In an homogeneous system, it has been shown by several authors
that the phase relaxation time behaves as(8, 9, 41)

{%r;�= (9)

where ; is the distance from the bifurcation point and = the noise
amplitude, inversely proportional to the total number of particles, i.e.,

=rN &1=(nV )&1=n&1L&d (10)
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During this time, a chemical signal will diffuse over a distance of about
- D{% . The system will therefore remain in a coherent oscillatory state as
long as L�- D{% . Taking into account the relation (10), one can write
this condition in the form,

L1&d�2<C - n;D (11)

where C is a numerical constant, independent of both L and ;. Its value
cannot be determined within the framework of this simple analysis.

Relation (11) implies a critical dimensionality of 2, in agreement with
previous results based on an asymptotic analysis of both master equa-
tion(43) and stochastic Burgers equation.(44) Homogeneous oscillations are
thus maintained for arbitrarily large three dimensional systems. This is not
the case for a one dimensional system where there exists a critical value of
L beyond which homogeneous oscillations will always be destroyed. This is
precisely what we have observed in our simulations.

The validity of the result (11) can be further investigated through the
numerical analysis of two dimensional systems. A microscopic simulation
remains beyond the reach of present day computers, since it requires over
2_1010 particles, but the master equation simulation still remains tract-
able. We have considered a two dimensional analogue of the case (c), with
a random non uniform initial condition. After an extremely long transient
behavior (about two orders of magnitude longer than the corresponding
one dimensional case), the system eventually switches to an homogeneous
oscillatory regime, in qualitative agreement with predictions of the result
(11). Given this prohibitively long CPU time, we were not be able to draw
any quantitative conclusions. A more promising alternative is the simula-
tion of the associated Langevin equations. Works on this direction is in
progress and will be presented elsewhere.

Another puzzling aspect of the problem is related to the asymptotic
behavior of the master equation, in the limit Nc � �, Nc being the average
total number of particles per cell. As well known, in this limit the probabil-
ity distribution becomes sharp around the macroscopic path.(19) For large,
but finite values of Nc , this property remains true, in the sense that the
location of the extrema of the probability distribution still corresponds to
the solution of the underlying macroscopic equations (see ref. 34 for a
recent review). Now, for the choice of parameters given in Eqs. (13), the
macroscopic equations admit a single stationary stable attractor which is a
limit cycle (one dimensional manifold). But we have shown that in one
dimensional systems there exists a critical system length above which the
master equation results always contradict the macroscopic predictions.
The question then arises as to the very nature of the chaotic-like of
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behavior we have observed in the case (c). Is it intrinsically contained in
the macroscopic formulation? If not, how can it be compatible with the fact
that the solution of macroscopic equations determines the location of the
must probable path of the stochastic process generated by the associated
master equation?

One possibility is the existence of stable time dependent solutions. In
fact, it is well known that the reaction diffusion equations generally admit
stable traveling wave solutions, (45, 46) in addition to a stable limit cycle.
These solutions, however, can only exist for a particular class of initial con-
ditions(15) whereas in a stochastic formulation the system can in principle
visit the entire phase space (ergodicity). As a consequence, even if we start
our stochastic simulation in a traveling wave regime, sooner or later the
system will switch to the time periodic regime. This of course does not
preclude subsequent random short visits to the traveling wave regime,
provided a sufficiently number of unstable modes are excited, i.e., the
system is ``long enough.'' This phenomenon gives a plausible explanation of
the very origin of the desynchronization mechanism of the homogeneous
oscillations. To check the validity of this appealing argument, one has to
set up either an analytical or numerical method that allows the construc-
tion of the full phase space density by tracing both the stationary time
periodic and traveling wave regimes. To our knowledge this problem
remains widely open.
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